Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hoàng Baỏ
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

em rất thích đồ chơi

lê gô. đồ chơi có thể ,lắp ghép, tạo hình.

Xuân là người sung sướng.

\(\prod_{\placeholder{}}^{\prod{\sum_{\placeholder{}}^{\sum{\partial\frac{\partial}{\partial x}\dfrac{\mathrm{d}}{\mathrm{d}x}\mathrm{d}x\oint\iiint\iint\int\int_{\placeholder{}}^{\int_{\placeholder{}}^{\int_0^{\infty}\!\rarr\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overrightarrow{\overline{\placeholder{}}}}}}}}}}}}}}}}}}}}}}}}}}}}\,\mathrm{d}x}}}}}}\)

⏫⏬⏩🈶📶🎦🈹🈲📶⏬🈚🔁💳🏴󠁧󠁢󠁷󠁬󠁳󠁿🉑🏴󠁧󠁢󠁷󠁬󠁳󠁿🉑🈵🛑🈺📶🈷️⁉️🔁🈺🔁⁉️⏩🔁⁉️🔁⏩🛑🔁▶️🛑🈷️⏪▶️🆚⏬📶🈸🏴󠁧󠁢󠁷󠁬󠁳󠁿🔁🔁🈺🔁🛑⏬🔁🛑🈷️🏴󠁧󠁢󠁷󠁬󠁳󠁿▶️⏬🈷️🔁🈵🔁🈺⏪📶🛑📶▶️🔂🈹🈺🔁💳💳🈶🈵🈹🔁🔂🔂🆚⏬🆚📶⁉️🆚🆚🆚🆚🈵🈵🆚🆚🈵🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚🆚⏩⏪🔼⏫⏮️⏭️◀️⏯️⏏️⏸️⏬🔽⏫🔼⏪⏩▶️🔀⏹️⏺️^⁠_⁠^🈴(⁠*⁠_⁠*⁠)^⁠_(⁠^⁠3⁠^⁠♪╮⁠(⁠.⁠ ⁠❛⁠ ⁠ᴗ⁠ ⁠❛⁠.⁠)⁠╭┐⁠(⁠ ⁠∵⁠ ⁠)⁠┌¯⁠\⁠_⁠༼⁠ ⁠ಥ⁠ ⁠‿⁠ ⁠ಥ⁠ ⁠༽⁠_⁠/⁠¯¯⁠\⁠_⁠༼⁠ ⁠ಥ⁠ ⁠‿⁠ ⁠ಥ⁠ ⁠༽⁠_⁠/⁠¯¯⁠\⁠_⁠༼⁠ᴼ⁠ل͜⁠ᴼ⁠༽⁠_⁠/⁠¯¯⁠\⁠_⁠ʘ⁠‿⁠ʘ⁠_⁠/⁠¯¯⁠\⁠_⁠ʘ⁠‿⁠ʘ⁠_⁠/⁠¯¯⁠\⁠(⁠◉⁠‿⁠◉⁠)⁠/⁠¯╮⁠(⁠.⁠ ⁠❛⁠ ⁠ᴗ⁠ ⁠❛⁠.⁠)⁠╭╮⁠(⁠^⁠▽⁠^⁠)⁠╭¯⁠\⁠(⁠◉⁠‿⁠◉⁠)⁠/⁠¯¯⁠\⁠_⁠༼⁠ ⁠ಥ⁠ ⁠‿⁠ ⁠ಥ⁠ ⁠༽⁠_⁠/⁠¯┐⁠(⁠ ⁠˘⁠_⁠˘⁠)⁠┌

\(1234567tn\sum\limits{\sum_{\placeholder{}}^{\int_0^{\infty}\!\int_{\placeholder{}}^{\int\iint\iiint\oint\mathrm{d}x\dfrac{\mathrm{d}}{\mathrm{d}x}\frac{\partial}{\partial x}\partial\sum\limits{\sum_{\rarr\begin{cases}\begin{cases}\begin{cases}\left[\begin{array}{l}\left[\begin{array}{l}\left[\begin{array}{l}\Phi\varsigma\epsilon\rho\tau\upsilon\eta\eta\upsilon\alpha\eta\gamma\delta\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\end{cases}}^{\prod{\prod_{\placeholder{}}^{\placeholder{}}}}}}\,\mathrm{d}x}}\)

\(\partial\prod{\iint\sum_{\placeholder{}}^{\iint\sum_{\placeholder{}}^{\mathrm{d}x\sum_{\placeholder{}}^{\sum_{\placeholder{}}^{\int_{\placeholder{}}^{\sum_{\frac{\partial}{\partial x}\sum_{\placeholder{}}^{\int\prod{\iiint\sum_{\placeholder{}}^{\int_{\placeholder{}}^{\sum_{\placeholder{}}^{\partial\prod{\int\dfrac{\mathrm{d}}{\mathrm{d}x}\iint\prod_{\placeholder{}}^{\iint\sum_{\placeholder{}}^{\dfrac{\mathrm{d}}{\mathrm{d} x}\prod{\iint\sum_{\placeholder{}}^{\int\prod{\iint\dfrac{\mathrm{d}}{\mathrm{d}x}\int\prod_{\placeholder{}}^{\oint\int\sum\limits{\int\prod{\iiint\int\int_0^{\infty}\!\int_0^{\infty}\!\iiint\oint\int\int_0^{\infty}\!\int_0^{\infty}\!\int_{\placeholder{}}^{\int\iint\iiint\oint\mathrm{d}x\dfrac{\mathrm{d}}{\mathrm{d}x}\frac{\partial}{\partial x}\partial\sum\limits{\sum_{\placeholder{}}^{\sum_{\placeholder{}}^{\prod{\prod_{\placeholder{}}^{78+89=}}}}}}\,\mathrm{d}x\,\mathrm{d}x\,\mathrm{d}x\,\mathrm{d}x}}}}}}}}}}}}}}}^{\frac{\partial}{\partial x}}}}}}}}\)

\(\partial\mathrm{d}x\prod_{\placeholder{}}^{\iint\mathrm{d}x\prod{\mathrm{d}x\iiint\int_0^{\infty}\!\sum_{\placeholder{}}^{\mathrm{d}x\partial\frac{\partial}{\partial x}\int_{\placeholder{}}^{\prod{\iiint\prod{\mathrm{d}x\frac{\partial}{\partial x}\int_0^{\infty}\!\iiint\frac{\partial}{\partial x}\partial\oint\mathrm{d}x\mathrm{d}x\oint\mathrm{d}x\prod{\mathrm{d}x\partial\prod\begin{cases}\begin{cases}\begin{cases}\left[\begin{array}{l}\left[\begin{array}{l}\left[\begin{array}{l}\placeholder{}\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\end{array}\right.\\ \placeholder{}\end{array}\right.\\ \placeholder{}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\\ \placeholder{}\end{cases}\\ \placeholder{}\end{cases}}\,\mathrm{d}x}}}}\,\mathrm{d}x}}\)

\(\frac{\partial}{\partial x}\int_0^{\infty}\!\partial\prod{\frac{\partial}{\partial x}\oint\prod{\int_{\placeholder{}}^{\iiint\int\prod{\frac{\partial}{\partial x}\int_{\placeholder{}}^{\mathrm{dd}x\iiint x\dfrac{\mathrm{d}}{\mathrm{d}x}\frac{\partial}{\partial x}\int_{\placeholder{}}^{\int_{\placeholder{}}^{\partial\int_{\placeholder{}}^{\iiint\int_{\placeholder{}}^{\prod{\int_{\placeholder{}}^{\partial\int_{\placeholder{}}^{\prod{\int_{\placeholder{}}^{\iiint\partial\int_{\placeholder{}}^{\partial\int_{\placeholder{}}^{\prod_{\placeholder{}}^{\int_{\placeholder{}}^{\iiint\prod{\mathrm{d}x\prod_{\placeholder{}}^{\prod_{\placeholder{}}^{\sum{\prod{\sum_{\placeholder{}}^{\sum{\sum_{\placeholder{}}^{\sum_{\placeholder{}}^{\sum_{\placeholder{}}^{\sum{\prod{\prod_{\placeholder{}}^{\mathrm{d}x\partial\oint\int_0^{\infty}\!\frac{\partial}{\partial x}\iiint\mathrm{d}x\dfrac{\mathrm{d}}{\mathrm{d}x}\partial\frac{\partial}{\partial x}\frac{\partial}{\partial x}\dfrac{\mathrm{d}}{\mathrm{d}x}\partial\partial\int_0^{\infty}\!\partial\int_0^{\infty}\!\mathrm{d}x\partial\dfrac{\mathrm{d}}{\mathrm{d}x}\partial\partial\partial\partial\partial\oint\int_0^{\infty}\!\iint\iint\int_{\placeholder{}}^{\iint\int\iiint\int_{\placeholder{}}^{\iint\int_{\placeholder{}}^{\iint\int_{\placeholder{}}^{\iiint\int\iint\int_{\placeholder{}}^{\iiint\int\oint\int_{\placeholder{}}^{\oint\frac{\partial}{\partial x}\partial\mathrm{d}x\partial\dfrac{\mathrm{d}}{\mathrm{d}x}\frac{\partial}{\partial x}\mathrm{d}x\partial\mathrm{d}x\partial\partial\mathrm{d}x\dfrac{\mathrm{d}}{\mathrm{d}x}\frac{\partial}{\partial x}\partial}}}}}}\,\mathrm{d}x\,\mathrm{d}x\,\mathrm{d}x\,\mathrm{d}x}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}\,\mathrm{d}x\)