Giới thiệu về bản thân
Xét \(\Delta A B C\) vuông tại \(B\), ta có:
\(tan \hat{B A C} = \frac{B C}{A B} = \frac{2}{2 , 5} = 0 , 8\) (tỉ số lượng giác của góc nhọn)
Suy ra \(\hat{B A C} \approx 38 , 7^{\circ}\)
Ta có: \(\hat{B A D} = \hat{B A C} + \hat{C A D} = 38 , 7^{\circ} + 2 0^{\circ} = 58 , 7^{\circ}\)
Xét \(\Delta A B D\) vuông tại \(B\), ta có:
\(tan \hat{B A D} = \frac{B D}{A B}\) (tỉ số lượng giác của góc nhọn)
Suy ra \(B D = A B . tan \hat{B A D} = 2 , 5. tan 58 , 7^{\circ} \approx 4 , 1\) m.
\(C D = B D - B C = 4 , 1 - 2 = 2 , 1\) m.
Vậy độ dài vùng được chiếu sáng trên mặt đất là \(2 , 1\) m.
1) \(sin 3 5^{\circ} = cos \left(\right. 9 0^{\circ} - 3 5^{\circ} \left.\right) = cos \&\text{nbsp}; 5 5^{\circ}\);
\(tan 2 8^{\circ} = cot \left(\right. 9 0^{\circ} - 2 8^{\circ} \left.\right) = cot 6 2^{\circ}\).
2) Xét \(\Delta A B C\) vuông tại \(A\), ta có:
\(B C = 20\)
\(cos \hat{B} = \frac{A B}{B C} = \frac{A B}{20} = cos 3 6^{\circ}\)
Suy ra \(A B = B C . cos 3 6^{\circ} \approx 16 , 18\) cm.
Gọi vận tốc lúc về của người đó là x(km/h)
(Điều kiện: x>0)
Vận tốc lúc đi là x+10(km/h)
Thời gian người đó đi từ A đến B là \(\frac{60}{x + 10} \left(\right. g i ờ \left.\right)\)
Thời gian người đó đi từ B về A là \(\frac{60}{x} \left(\right. g i ờ \left.\right)\)
Thời gian về nhiều hơn thời gian đi là 30p=0,5 giờ nên ta có:
\(\frac{60}{x} - \frac{60}{x + 10} = 0 , 5\)
=>\(\frac{60 x + 600 - 60 x}{x \left(\right. x + 10 \left.\right)} = 0 , 5\)
=>\(x \left(\right. x + 10 \left.\right) = \frac{600}{0 , 5} = 1200\)
=>\(x^{2} + 10 x - 1200 = 0\)
=>(x+40)(x-30)=0
=>\(\left[\right.x+40=0\\x-30=0\Leftrightarrow\left[\right.x=-40\left(\right.KTM\left.\right)\\x=30\left(\right.TM\left.\right)\)
Vậy: Vận tốc lúc về của người đó là 30km/h
a) ĐKXĐ: x ≠ -5
(x + 6).2 + 3.(x + 5) = 2.2(x + 5)
2x + 12 + 3x + 15 = 4x + 20
5x - 4x = 20 - 12 - 15
x = -7 (TMĐK)
Vậy x = {-7}
a) Nhiệt độ t (⁰C) tuần tới tại Tokyo là:
t > -5
b) Gọi x (tuổi) là tuổi của người điều khiển xe máy điện. Ta có bất đẳng thức:
x ≥ 16
c) Gọi z (đồng) là mức lương tối thiểu trong một giờ làm việc của người lao động. Ta có bất đẳng thức:
z ≥ 20000
d) y là số dương nên ta có bất đẳng thức:
y > 0