Giới thiệu về bản thân
hai ngày đầu bình đọc được số phần cuốn sách là:
1/6+1/4=4/24+6/24=10/24=5/12(cuốn sách)
ngày thứ tư Bình đọc được số phần cuốn sách là:
1-5/12-1/5=60/60-25/60-12/60=23/60(cuốn sách)
hai ngày cuối Bình đọc được số cuốn sách là;
1/5+23/60=12/60+23/60=35/60=7/12(cuốn sách)
vì 5/12<7/12 nên 2 ngày đầu đọc được ít hơn hai ngày sau phân số chênh lệch là 7/12-5/12=2/12=1/6
a) x + 1/2 = 6/4
x + 1/2 = 3/2x = 3/2 - 1/2
x = 2/2x = 1
b)X mũ 4*3 mũ 5=27 mũ 3
X mũ 4*3 mũ 5=3 mũ9
X mũ 4=3 mũ 4
X=3
c) 8/3 * (5/24 - x) = -1/3
5/24-X=-1/3:8/3
5/24-X=-1/3*3/8
5/24-X=-3/24
X=5/24--3/24
X=8/24
X=1/3
a)5/4-(-1/2)mũ2
=5/4-1/4
=1
b)2/3*-3/2+-(-7/2)*2/3
(2/3) *[(-3/2) + (-7/2)]
= (2/3) * [{-3-7}/{2}]= (2/3) * (-10/2)
= (2/3) * (-5)
c) -10/3 (1/5 - 2/5 - 4/5) + (4/13 + 7/13 + 2/13)= {1 - 2 - 4}/{5} + {4 + 7 + 2}/{13}
= -5/5 + 13/13= -1 + 1
= 0a) Ta có \(\hat{C A x} + \hat{B A C} = 18 0^{\circ}\) (hai góc kề bù).
Suy ra: \(\hat{C A x} = 18 0^{\circ} - \hat{B A C}\)
\(\hat{C A x} = 18 0^{\circ} - \&\text{nbsp}; 10 0^{\circ} = 8 0^{\circ}\).
b) Vì \(A y\) là tia phân giác của \(\hat{C A x}\), nên
\(\hat{C A y} = \hat{x A y} = \frac{1}{2} . \hat{C A x} = \frac{1}{2} . 8 0^{\circ} = 4 0^{\circ}\).
Vậy \(\hat{C A y} = \hat{A C B}\), mà hai góc này ở vị trí so le trong, do đó \(A y\) // \(B C\).
c) Do \(A y\) // \(B C\), nên \(\hat{x A y} = \hat{A B C}\) (hai góc đồng vị).
Suy ra \(\hat{A B C} = 4 0^{\circ}\).
Số tiền 3 quyển sách là:
\(3.120 000 = 360 000\) (đồng)
Số tiền Lan phải trả khi có thẻ thành viên là:
\(360 000. \left(\right. 100 \% - 10 \% \left.\right) = 324 000\) (đồng)
Ta có: \(350 000 - 324 000 = 26 000\) (đồng).
Do đó Lan được trả lại \(26 000\) đồng.
Cho biết \(1^{2} + 2^{2} + 3^{2} + \ldots + 1 0^{2} = 385\).
Tính \(A = 3^{2} + 6^{2} + 9^{2} + \ldots + 3 0^{2}\).
Hướng dẫn giải:
Ta có: \(1^{2} + 2^{2} + 3^{2} + \ldots + 1 0^{2} = 385\)
Suy ra: \(\left(\right. 1^{2} + 2^{2} + 3^{2} + \ldots + 1 0^{2} \left.\right) . 3^{2} = 385. 3^{2}\)
\(\left(\right. 1.3 \left.\right)^{2} + \left(\right. 2.3 \left.\right)^{2} + \left(\right. 3.3 \left.\right)^{2} + \ldots + \left(\right. 10.3 \left.\right)^{2} = 385. 3^{2}\)
Do đó \(A = 3^{2} + 6^{2} + 9^{2} + \ldots + 3 0^{2} = 3465\).
a) \(x - \frac{2}{3} = \frac{1}{6}\)
\(x = \frac{1}{6} + \frac{2}{3}\)
\(x = \frac{1}{6} + \frac{4}{6}\)
\(x = \frac{5}{6}\).
b) \(2 x + \frac{1}{2} = - \frac{5}{3}\)
\(2 x = - \frac{5}{3} - \frac{1}{2}\)
\(2 x = - \frac{13}{6}\)
\(x = - \frac{13}{12}\).
c) \(3 x + \frac{3}{2} = x - \frac{5}{3}\)
\(3 x - x = - \frac{5}{3} - \frac{3}{2}\)
\(2 x = \frac{- 19}{6}\)
\(x = \frac{- 19}{12}\).
a) \( \frac{11}{24} - \frac{5}{41} + \frac{13}{24} + 0 , 5 - \frac{36}{41} = \left(\right. \frac{11}{24} + \frac{13}{24} \left.\right) - \left(\right. \frac{5}{41} + \frac{36}{41} \left.\right) + 0 , 5 = 1 - 1 + 0 , 5 = 0 , 5\).
b) \(\frac{1}{2} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} = \frac{1}{2} \cdot \left(\right. \frac{3}{4} + \frac{1}{4} + 1 \left.\right) = \frac{1}{2} \cdot 2 = 1\).
c) \(\left(\right. \frac{- 3}{4} \left.\right)^{2} : \left(\right. \frac{- 1}{4} \left.\right)^{2} + 9 \cdot \left(\right. \frac{- 1}{9} \left.\right) + \left(\right. \frac{- 3}{2} \left.\right) = \frac{9}{16} : \frac{1}{16} - 1 - \frac{3}{2} = 9 - 1 - \frac{3}{2} = \frac{13}{2} .\)
d) \(\sqrt{0 , 25} \cdot \left(\right. - 3 \left.\right)^{3} - \sqrt{\frac{1}{81}} : \left(\right. \frac{- 1}{3} \left.\right)^{3} = 0 , 5 \cdot \left(\right. - 27 \left.\right) - \frac{1}{9} : \frac{- 1}{27} = \frac{- 27}{2} + 3 = \frac{- 21}{2}\).
a) \(\hat{m O x} + \hat{x O n} = 18 0^{\circ}\) (hai góc kề bù)
Vậy \(\hat{n O x} = 18 0^{\circ} - 3 0^{\circ} = 15 0^{\circ}\).
\(O t\) là tia phân giác của \(\hat{n O x}\), suy ra \(\hat{n O t} = \frac{1}{2} . \hat{n O x} = 7 5^{\circ}\).
b) a // b suy ra \(\hat{A_{4}} = \hat{B_{2}} = 6 5^{\circ}\) (hai góc so le trong).
Mặt khác, ta có \(\hat{B_{2}} + \hat{B_{3}} = 18 0^{\circ}\) (hai góc kề bù)
Suy ra \(\hat{B_{3}} = 18 0^{\circ} - \hat{B_{2}} = 11 5^{\circ}\).
a) \(x + \frac{2}{5} = \frac{- 4}{3}\);
\(x = \frac{- 4}{3} - \frac{2}{5}\)
\(x = \frac{- 26}{15}\).
b) \(\frac{- 5}{6} + \frac{1}{3} . x = \left(\right. \frac{- 1}{2} \left.\right)^{2}\);
\(\frac{- 5}{6} + \frac{1}{3} . x = \frac{1}{4}\)
\(\frac{1}{3} . x = \frac{1}{4} + \frac{5}{6}\)
\(\frac{1}{3} . x = \frac{13}{12}\)
\(x = \frac{13}{12} : \frac{1}{3}\)
\(x = \frac{13}{4}\).
c) \(\frac{7}{12} - \left(\right. x + \frac{7}{6} \left.\right) . \frac{6}{5} = \left(\right. \frac{- 1}{2} \left.\right)^{3}\).
\(\frac{7}{12} - \left(\right. x + \frac{7}{6} \left.\right) . \frac{6}{5} = \frac{- 1}{8}\)
\(\left(\right. x + \frac{7}{6} \left.\right) . \frac{6}{5} = \frac{7}{12} - \left(\right. \frac{- 1}{8} \left.\right)\)
\(\left(\right.x+\frac{7}{6}\left.\right).\frac{6}{5}=\frac{17}{24}\)
\(x+\frac{7}{6}=\frac{85}{144}\)
\(x=\frac{85}{144}-\frac{7}{6}\)
\(x=\frac{- 83}{144}\).