Giới thiệu về bản thân
Xét tam giác \(A B C\) có hai đường trung tuyến \(B M\) và \(C N\) cắt nhau tại \(G\) (giả thiết) nên \(G\) là trọng tâm của \(\Delta A B C\).
Suy ra \(G M = \frac{G B}{2}\); \(G N = \frac{G C}{2}\) (tính chất trọng tâm của tam giác) (1)
Mà \(P\) là trung điểm của \(G B\) (giả thiết) nên \(G P = P B = \frac{G B}{2}\) (2)
\(Q\) là trung điểm của \(G C\) (giả thiết) nên \(G Q = Q C = \frac{G C}{2}\) (3)
Từ (1), (2) và (3) suy ra \(G M = G P\) và \(G N = G Q\).
Xét tứ giác \(P Q M N\) có: \(G M = G P\) và \(G N = G Q\) (chứng minh trên)
Do đó tứ giác \(P Q M N\) có hai đường chéo \(M P\) và \(N Q\) cắt nhau tại trung điểm \(G\) của mỗi đường nên là hình bình hành.
a) ABCD là hình bình hành nên AD = BC và AD // BC.
Mà E là trung điểm của AD nên AE = ED;
F là trung điểm của BC nên BF = FC.
Suy ra DE = BF.
Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).
b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD.
Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của BD nên O là trung điểm của EF.
Vậy ba điểm E, O, F thẳng hàng.
a) Do \(A B C D\) là hình bình hành nên \(A D\) // \(B C\) và \(A D = B C\).
Do \(A D\) // \(B C\) nên \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\) (so le trong)
Xét \(\Delta A D H\) và \(\Delta C B K\) có:
\(\hat{A H D}=\hat{C K B}=90^{\circ}\);
\(A D = B C\) (chứng minh trên);
\(\hat{A D H}=\hat{C B K}\) (do \(\hat{A D B} \&\text{nbsp}; = \hat{C B D}\)).
Do đó \(\Delta \&\text{nbsp}; A D H = \Delta \&\text{nbsp}; C B K\) (cạnh huyền – góc nhọn).
Suy ra \(A H = C K\) (hai cạnh tương ứng).
Ta có \(AH\bot DB\) và \(CK\bot DB\) nên \(A H\) // \(C K\).
Tứ giác \(A H C K\) có \(A H\) // \(C K\) và \(A H = C K\) nên \(A H C K\) là hình bình hành (dấu hiệu nhận biết).
b) Do \(A H C K\) là hình bình hành (câu a) nên hai đường chéo \(A C\) và \(H K\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(H K\) (giả thiết) nên \(I\) là trung điểm của \(A C\).
Do \(A B C D\) là hình bình hành nên hai đường chéo \(A C\) và \(B D\) cắt nhau tại trung điểm của mỗi đường.
Mà \(I\) là trung điểm của \(A C\) nên \(I\) là trung điểm của \(B D\), hay \(I B = I D\).
a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = \(\frac{1}{2}\)AB, CF = DF = \(\frac{1}{2}\)CD
Do đó AE = BE = CF = DF.
Xét tứ giác AEFD có:
AE // DF (vì AB // CD);
AE = DF (chứng minh trên)
Do đó tứ giác AEFD là hình bình hành.
Xét tứ giác AECF có:
AE // CF (vì AB // CD);
AE = CF (chứng minh trên)
Do đó tứ giác AECF là hình bình hành.
Vậy hai tứ giác AEFD, AECF là những hình bình hành.
b) Vì tứ giác AEFD là hình bình hành nên EF = AD.
Vì tứ giác AECF là hình bình hành nên AF = EC.
Vậy EF = AD, AF = EC.
I started this hobby when I was ten years old. First, my dad taught me how to play badminton. He showed me how to serve, hit the shuttlecock, and move quickly around the court. I liked it right away. Now, I often play badminton with my friends in the park on the weekends.
Weekends are the perfect time for playing badminton. We have enough time to warm up, play several matches, and rest afterward. Playing badminton also helps me relax after a busy week with lots of homework. I don’t have to worry about anything — I just focus on the game and have fun with my friends.