Giới thiệu về bản thân
Hướng dẫn giải:
Ta có: \(A = x^{2} + 2 y^{2} 2 x y + 2 x 6 y + 2 028\)
\(= x^{2} 2 x y + y^{2} + y^{2} + 2 x - 2 y - 4 y + 1 + 4 + 2 023\)
\(= \left[\right. x^{2} - 2 x y + \left(\right. - y^{2} \left.\right) + 2 x - 2 y + 1 \left]\right. + \left(\right. y^{2} - 4 y + 4 \left.\right) + 2 023\)
\(= \left(\left(\right. x - y + 1 \left.\right)\right)^{2} + \left(\left(\right. y - 2 \left.\right)\right)^{2} + 2 023\)
Vì \(\left(\left(\right. x - y + 1 \left.\right)\right)^{2} \geq 0\) với mọi \(x , y\) và \(\left(\left(\right. y - 2 \left.\right)\right)^{2} \geq 0\) với mọi \(y\).
Suy ra \(A \geq 2 023\).
Vậy giá trị nhỏ nhất của \(A\) là \(2\) \(023\) đạt được khi \(x - y = - 1\) và \(y - 2 = 0\) hay \(x = 1\) và \(y = 2\).
a) Vì \(d\) // \(C D\) // \(A B\) nên \(M P\) // \(C D\) và \(P N\) // \(A B\).
Xét \(\Delta A D C\) có \(M P\) // \(C D\):
\(\frac{A M}{M D} = \frac{A P}{P C}\)( Định lí Thalès) (1)
Xét \(\Delta A C B\) có \(N P\) // \(A B\):
\(\frac{A P}{P C} = \frac{B N}{N C}\)( Định lí Thalès) (2)
Từ (1), (2) suy ra \(\frac{A M}{M D} = \frac{B N}{N C}\)
b) Chứng minh \(\frac{M P}{D C} = \frac{1}{3}\)
Suy ra \(M P = 2\) cm
Chứng minh \(\frac{N P}{A B} = \frac{2}{3}\).
Suy ra \(P N = \frac{8}{3}\) cm.
Tính được \(M N = \frac{14}{3}\) cm.