Giới thiệu về bản thân
Từ \(x + y + z = 0\) suy ra \(x + y = - z\)
\(x^{2} + 2 x y + y^{2} = z^{2}\)
\(x^{2} + y^{2} - z^{2} = - 2 x y\).
Tương tự ta có: \(y^{2} + z^{2} - x^{2} = - 2 y z\) và \(z^{2} + x^{2} - y^{2} = - 2 z x\).
Do đó \(A = \frac{x y}{- 2 x y} + \frac{y z}{- 2 y z} + \frac{z x}{- 2 z x} = - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = - \frac{3}{2}\).
Vậy \(A = - \frac{3}{2}\).
a) \(\Delta A B C\) vuông tại \(A\) suy ra \(\hat{B A C} = 9 0^{\circ}\) suy ra \(\hat{D A E} = 9 0^{\circ}\).
Do \(H D ⊥ A B\) suy ra \(\hat{H D A} = 9 0^{\circ}\); \(H E ⊥ A C\) suy ra \(\hat{H E A} = 9 0^{\circ}\).
Tứ giác \(A D H E\) có \(\hat{D A E} = \hat{H D A} = \hat{H E A} = 9 0^{\circ}\) suy ra tứ giác \(A D H E\) là hình chữ nhật.
b) Do \(\Delta A H D\) vuông tại \(D\), áp dụng định lí Pythagore suy ra:
\(A H^{2} = A D^{2} + D H^{2}\)
\(25 = 16 + D H^{2}\)
\(D H^{2} = 9\) nên \(D H = 3\) cm.
Do \(A D H E\) là hình chữ nhật suy ra \(S_{A D H E} = A D . D H = 4.3 = 12\) (cm\(^{2}\)).
Vì đồ thị hàm số \(y = a x + b\) đi qua điểm \(A \left(\right. - 1 ; 2 \left.\right)\) nên ta có:
\(2 = - 1. a + b\) suy ra \(- a + b = 2\)
Vi đồ thị hàm số \(y = a x + b\) đi qua điểm \(B \left(\right. 1 ; 4 \left.\right)\) nên ta có:
\(4 = 1. a + b\) suy ra \(a + b = 4 \left(\right. 2 \left.\right)\)
Từ (1) và (2) ta tìm được \(a = 1 ; b = 3\)
Vậy hàm số cần tìm là \(y = x + 3\).
a) Thay \(x = 2\) (thỏa mãn điều kiện xác định) vào \(Q = \frac{x + 1}{x^{2} - 9}\), ta được:
\(Q = \frac{x + 1}{x^{2} - 9} = \frac{2 + 1}{2^{2} - 9} = \frac{3}{- 5} = - \frac{3}{5}\).
b) \(P = \frac{2 x^{2} - 1}{x \left(\right. x + 1 \left.\right)} - \frac{\left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right)}{x \left(\right. x + 1 \left.\right)} + \frac{3 x}{x \left(\right. x + 1 \left.\right)}\)
\(P = \frac{2 x^{2} - 1 - \left(\right. x^{2} - 1 \left.\right) + 3 x}{x \left(\right. x + 1 \left.\right)}\)
\(P = \frac{2 x^{2} - 1 - x^{2} + 1 + 3 x}{x \left(\right. x + 1 \left.\right)}\)
\(P = \frac{x^{2} + 3 x}{x \left(\right. x + 1 \left.\right)} = \frac{x + 3}{x + 1}\).
c) Ta có \(M = P . Q = \frac{x + 3}{x + 1} . \frac{x + 1}{x^{2} - 9} = \frac{x + 3}{\left(\right. x - 3 \left.\right) \left(\right. x + 3 \left.\right)} = \frac{1}{x - 3}\)
\(M = \frac{- 1}{2}\) suy ra \(\frac{1}{x - 3} = \frac{- 1}{2}\)
\(x - 3 = - 2\)
\(x = 1\).
Vậy với \(x = 1\) thì\(M = \frac{- 1}{2}\).
a) 5(x+2y)−15x(x+2y)=5(x+2y).(1−3x).
=(x +2y)(5-15x)
b)4x² - 12x + 9 = (2x - 3)²
c) (3x−2)3−3(x−4)(x+4)+(x−3)3−(x+1)(x2−x+1)
\(= 27 x^{3} - 54 x^{2} + 36 x - 8 - 3 \left(\right. x^{2} - 16 \left.\right) + x^{3} - 9 x^{2} + 27 x - 27 - \left(\right. x^{3} + 1 \left.\right)\)
a) 5(x + 2y) - 15x(x + 2y)
\(= \left(\right. 27 x^{3} + x^{3} - x^{3} \left.\right) + \left(\right. - 54 x^{2} - 3 x^{2} - 9 x^{2} \left.\right) + \left(\right. 36 x + 27 x \left.\right) + \left(\right. - 8 + 48 - 27 - 1 \left.\right)\)
\(= 27 x^{3} - 66 x^{2} + 63 x + 12\).
I have a lot of hobbies to do in my free time but I love reading books the most. I started reading books about 2 years ago. I usually read books at home but sometimes I prefer to read books with my friends in the school library. I often read books after class because of the fact that it helps me relax after stressful hours of studying. Some people think that reading books is so boring. However, I do not agree with that opinion, because when I read books, I will have many vocabularies for writing and reading in literature. Besides, reading books also helps me know more about the world, such as: The history and culture of other countries,... Reading makes me happier and I love it so much