Giới thiệu về bản thân
- Ban hành tiêu chuẩn nghiêm ngặt
- Khuyến khích công nghệ sạch
-Trồng nhiều cây xanh
Giá trị của m là 32,725
- Ban hành tiêu chuẩn nghiêm ngặt
- Khuyến khích công nghệ sạch
-Trồng nhiều cây xanh
- Ban hành tiêu chuẩn nghiêm ngặt
- Khuyến khích công nghệ sạch
-Trồng nhiều cây xanh
- Ban hành tiêu chuẩn nghiêm ngặt
- Khuyến khích công nghệ sạch
-Trồng nhiều cây xanh
- Ban hành tiêu chuẩn nghiêm ngặt
- Khuyến khích công nghệ sạch
-Trồng nhiều cây xanh
Biến đổi hóa học gồm: b, c, g
Biến đổi vật lý gồm:a, d, e
Tại \(x = 9\)
\(C = x^{14} - 10 x^{13} + 10 x^{12} - 10 x^{11} + . . . + 10 x^{2} - 10 x + 10\)
\(C = x^{14} - \left(\right. x + 1 \left.\right) x^{13} + \left(\right. x + 1 \left.\right) x^{12} - \left(\right. x + 1 \left.\right) x^{11} + . . . + \left(\right. x + 1 \left.\right) x^{2} - \left(\right. x + 1 \left.\right) x + x + 1\)
\(C = x^{14} - x^{14} - x^{13} + x^{13} + x^{12} - x^{12} - x^{11} + . . . + x^{3} + x^{2} - x^{2} - x + x + 1\)
\(C = 1\).
Vậy khi x=9 thì giá trị của C là 1
a) Xét \(\Delta A H B\) và \(\Delta A H C\) có:
\(A B = A C\) (gt);
\(A H\) chung;
\(H B = H C\) (\(H\) là trung điểm của \(B C\));
Suy ra \(\Delta A H B = \Delta A H C\) (c.c.c).
b) Vì \(\Delta A H B = \Delta A H C\) (cmt) suy ra \(\hat{A H B} = \hat{A H C}\) (cặp góc tương ứng).
Mà \(\hat{A H B} + \hat{A H C} = 18 0^{\circ}\) (hai góc kề bù).
Suy ra \(\hat{A H B} = \hat{A H C} = 9 0^{\circ}\).
Vậy \(A H \bot B C\).
c) Vi \(\Delta A H B = \Delta A H C\) (cmt) suy ra \(\hat{H A B} = \hat{H A C} = 4 5^{\circ}\);
\(\hat{H C A} = \hat{H B A} = \frac{18 0^{\circ} - \hat{B A C}}{2} = 4 5^{\circ}\) (cặp góc tương ứng).
Xét \(\Delta E B A\) và \(\Delta B F C\) có:
\(A B = C F\) (gt);
\(\hat{B A E} = \hat{B C F}\) (cùng bù với \(\hat{H A B} = \hat{H C A} = 4 5^{\circ}\));
\(E A = B C\) (gt);
Suy ra \(\Delta E B A = \Delta B F C\) (c.g.c).
Vậy \(B E = B F\) (cặp cạnh tương ứng).
a) Biến cố \(A\) là biến cố ngẫu nhiên, biến cố \(B\) là biến cố chắc chắn, biến cố \(C\) là biến cố không thể.
b) Xác suất của biến cố \(A\) là: \(\frac{1}{2}\).