Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Kiểm tra cuối chương I SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các hàm số y=x+2x+1, y=tanx, y=x3+x2+4x−2026, có bao nhiêu hàm số đồng biến trên R?
Cho hàm số y=f′(x) có bảng xét dấu như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Cho hàm số y=−x4+2x2+3. Mệnh đề nào dưới đây đúng?
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Giá trị nhỏ nhất của hàm số y=x+1x−1 trên đoạn [0;3] là
Cho hàm số y=f(x) xác định trên [2;9) và có x→2+limf(x)=2, x→9−limf(x)=−∞. Khẳng định nào sau đây đúng?
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Hàm số y=x2−2x−3 nghịch biến trên khoảng nào sau đây?
Cho hàm số y=f(x) xác định trên R và có đồ thị hàm số y=f′(x) là đường cong như hình vẽ dưới đây.
Hàm số y=f(x) có bao nhiêu điểm cực trị?
Người ta ngọt hóa nước hồ bằng cách bơm nước ngọt vào hồ và biểu thức C(t)=400+3t4000(gam /lít) biểu thị nồng độ muối trong hồ sau t phút kể từ khi bắt đầu bơm. Khi thời gian đủ lớn nồng độ muối trong bể bằng
Đường cong nào sau đây là đồ thị của hàm số y=x+11−x?




Một vật chuyển động có phương trình quãng đường tính bằng mét phụ thuộc thời gian t tính bằng giây được biểu thị bởi hàm số f(t)=−t3+9t2+21t (m).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường mà vật đi được sau 2 s kể từ lúc bắt đầu chuyển động là 70 m . |
|
b) Vận tốc lớn nhất của vật thể là 21 (m/s). |
|
c) Vận tốc của vật tăng từ lúc bắt đầu chuyển động đến giây thứ 3. |
|
d) Kể từ lúc bắt đầu chuyển động đến khi dừng hẳn, vật đi được quãng đường là 250 m. |
|
Một cơ sở đóng giày sản xuất mỗi ngày được x đôi giày (1≤x≤20). Tổng chi phí sản xuất x đôi giày (đơn vị nghìn đồng) là C(x)=x3−6x2−88x+592. Giả sử cơ sở này bán hết sản phẩm mỗi ngày với giá 200 nghìn đồng/một đôi. Gọi T(x) là số tiền bán được và L(x) là lợi nhuận thu được sau khi bán hết x đôi giày.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giả sử trong một ngày nào đó cơ sở sản xuất được 10 đôi giày thì lợi nhuận thu được là 1888000 (đồng). |
|
b) Giả sử trong một ngày nào đó cơ sở lợi nhuận thu được là 1584000 đồng, khi đó cơ sở phải sản xuất được 9 đôi giày. |
|
c) Cơ sở này sản xuất được 12 đôi giày thì lợi nhuận thu được là nhiều nhất. |
|
d) Lợi nhuận tối đa thu được trong một ngày là 1980000 đồng. |
|
Xét hàm số y=2x−sin2x trên khoảng (0;π).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số nghịch biến trên khoảng (125π;π). |
|
b) Hàm số có hai điểm cực trị. |
|
c) Giá trị cực tiểu của hàm số là 245π−42+3. |
|
d) Đồ thị hàm số y=f′(x) cắt đồ thị hàm số y=2−sin22x tại 2 điểm trên khoảng (0;π). |
|
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ:
a) Hàm số y=f(x) nghịch biến trên khoảng (−∞;−1). |
|
b) Hàm số y=f(x) đồng biến trên khoảng (−1;+∞). |
|
c) Hàm số y=f(x) có hai điểm cực trị. |
|
d) Hàm số y=f(x) đạt cực tiểu tại điểm x=2. |
|
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Cho hàm số y=x3−3mx2+(2m2+1)x−mx−3. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−6;6] để đồ thị hàm số có 4 đường tiệm cận?
Trả lời:
Biết thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T, (0∘C ≤T≤30∘C) được tính bởi công thức: V(T)=999,87−0,06426T+0,0085043T2−0,0000679T3. Thể tích V(T) thấp nhất ở nhiệt độ bao nhiêu? (làm tròn đến hàng đơn vị của đơn vị ∘C)
Trả lời:
Cho hàm số y=x−12x−4 có đồ thị (C) và đường thẳng Δ:2x+y−m=0. Gọi S là tổng tất cả các giá trị của tham số m để đường thẳng Δ cắt đồ thị (C) tại hai điểm A,B phân biệt, đồng thời trung điểm của đoạn AB nằm trên đường tròn có tâm I(1;−1), bán kính R=2. Tính S (ghi kết quả dưới dạng số thập phân).
Trả lời: