Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Hàm số y=x4+x2+1 có bao nhiêu điểm cực trị?
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Tiếp tuyến của đồ thị hàm số y=−x3+2x−1 tại điểm M(0;−1) có hệ số góc là
Kết quả điều tra tổng thu nhập trong năm 2022 của một số hộ gia đình trong một địa phương được ghi lại ở bảng sau:
Tổng thu nhập (triệu đồng) | Số hộ gia đình |
[200;250) | 0 |
[250;300) | 45 |
[300;350) | 34 |
[350;400) | 21 |
[400;450) | 0 |
Khoảng biến thiên của mẫu số liệu trên là
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ x=(2;1;−3) và y=(1;0;−1). Tọa độ của vectơ a=x+2y là
Cho hàm số y=x3+3x+m, với m là tham số thực. Giá trị của m để giá trị lớn nhất của hàm số đã cho trên [0;1] bằng 4 là
Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y=x2+mx+4x−1 có hai đường tiệm cận?
Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:
Quãng đường (km) | Số ngày |
[2,7;3,0) | 3 |
[3,0;3,3) | 6 |
[3,3;3,6) | 5 |
[3,6;3,9) | 4 |
[3,9;4,2) | 2 |
Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Theo định luật II Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật: F=ma trong đó a là vectơ gia tốc, đơn vị m/s2; F là vectơ lực tác dụng lên vật; m kg là khối lượng của vật.
Muốn truyền cho quả bóng có khối lượng 0,5 kg một gia tốc 50 m/s2 thì cần một lực đá có độ lớn là bao nhiêu?
Cho tứ diện ABCD có các cạnh đều bằng a.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AD+CB+BC+DA=0. |
|
b) AB.BC=−2a2. |
|
c) AC.AD=AC.CD. |
|
d) AB.CD=0. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x)=x2−2x+6x+1 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên khoảng (0;1). |
|
b) Hàm số đạt cực đại tại x=−4. |
|
c) Với m=83 thì đường thẳng (Δ) đi qua hai điểm cực trị của đồ thị (C) vuông góc với đường thẳng d:(2m+3)x+my+2=0. |
|
d) Có 2024 giá trị nguyên của tham số m∈[−2;2028] để giá trị lớn nhất của hàm số h(x)=f(cosx−3sinx+1)+m2 lớn hơn 5. |
|
Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:
Thu nhập | Số người của nhà máy A | Số người của nhà máy B |
[5;8) | 20 | 17 |
[8;11) | 35 | 23 |
[11;14) | 45 | 30 |
[14;17) | 35 | 23 |
[17;17) | 20 | 17 |
a) Nhà máy A có số lượng người lao động nhiều hơn nhà máy B. |
|
b) Mức thu nhập trung bình của người lao động ở hai nhà máy này bằng nhau. |
|
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của mẫu số liệu thu nhập của người lao động nhà máy A nằm trong khoảng (5;5,5). |
|
d) Xét theo khoảng tứ phân vị, ta thấy mức thu nhập của số người nhà máy A phân tán hơn so với mức thu nhập của số người nhà máy B. |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2023;2023] để hàm số y=x3−6x2+mx+1 đồng biến trên khoảng (0;+∞)?
Trả lời:
Cho hình hộp ABCD.A′B′C′D′ có các cạnh đều bằng a và B′A′D′=60∘,B′A′A=D′A′A=120∘. Tính số đo (đơn vị độ) của góc giữa hai đường thẳng AB với A′D.
Trả lời: ∘
Trên một đoạn đường giao thông có 2 con đường vuông góc với nhau tại O như hình vẽ. Một địa danh lịch sử có vị trí đặt tại M, vị trí cách đường OE 125 cm và cách đường OX 1 km. Vì lý do thực tiễn người ta muốn làm một đoạn đường thẳng AB đi qua vị trí M, biết rằng giá trị để làm 100 m đường là 150 triệu đồng. Chọn vị trí của A và B để hoàn thành con đường với chi phí thấp nhất. Hỏi chi phí thấp nhất để hoàn thành con đường là bao nhiêu tỷ đồng? (kết quả làm tròn đến hàng phần mười)
Trả lời:
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−1)2(x2−4x) với mọi x∈R. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=f(x2−6x+m) có 5 điểm cực trị?
Trả lời:
Tìm m để đường thẳng y=2x+m cắt đồ thị hàm số y=x+1x+3 tại hai điểm A,B sao cho độ dài AB là nhỏ nhất.
Trả lời: