Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;−3) và B(−3;4;5). Tọa độ trung điểm I của đoạn thẳng AB là
Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 – 2022 cho kết quả sau:
Số thẻ vàng | Tần số |
[40;50) | 2 |
[50;60) | 5 |
[60;70) | 7 |
[70;80) | 5 |
[80;90) | 0 |
[90;100) | 0 |
[100;110) | 1 |
Khoảng biến thiên của mẫu số liệu trên là
Giá trị nhỏ nhất của hàm số y=x+1x−1 trên đoạn [0;3] là
Hình trên là bảng biến thiên của hàm số nào trong bốn hàm số dưới đây?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. Chiếc thứ hai nằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 km. Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía nam, Oy hướng về phía đông, Oz hướng thẳng đứng lên trời, đơn vị đo ki-lô-mét.
Khoảng cách giữa hai chiếc khinh khí cầu bằng
Trong không gian cho điểm O và bốn điểm A,B,C,D không có ba điểm nào thẳng hàng. Điều kiện cần và đủ để A,B,C,D tạo thành hình bình hành là
Cho hàm số y=6−x−x2. Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có đồ thị hàm số đạo hàm y=f′(x) như trong hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Cho ba hàm số: y=x−32x+1;y=x+3−x+1 và y=3x+22x. Có bao nhiêu hàm số mà đồ thị hàm số có tiệm cận ngang là đường thẳng y=2?
Định luật vạn vật hấp dẫn của Newton được cho bởi công thức F=Gr2m1.m2. Trong đó F là lực hấp dẫn giữa hai vật thể bất kì, G là hằng số hấp dẫn, m1,m2 là khối lượng các vật, r là khoảng cách giữa chúng. Đồ thị của hàm số cho bởi công thức này có tiệm cận đứng là r=0, điều này có nghĩa là khi r dần về 0 thì lực hấp dẫn sẽ tiến đến
Cho hai vectơ a và b thỏa mãn ∣a∣=2; ∣b∣=5, góc giữa hai vectơ a và b bằng 60∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) (a,−2b)=60∘. |
|
b) a.b=5. |
|
c) ∣a−2b∣=84. |
|
d) Biết vectơ v ngược hướng với vectơ a−2b và ∣v∣=421. Gọi α là góc giữa hai vectơ v và a. Khi đó cosα=8421. |
|
Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực A và B.
a) Hai khu vực A và B có mức lương trung bình bằng nhau. |
|
b) Phương sai của mẫu số liệu ở khu vực A lớn hơn 1,5. |
|
c) Độ lệch chuẩn của mẫu số liệu ở khu vực B lớn hơn 1,2. |
|
d) Mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Giả sử chi phí tiền xăng C (đồng) phụ thuộc vào tốc độ trung bình v (km/h) theo công thức: C(v)=v16000+25v,(0<v≤120).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đạo hàm C′(v)=v2−16000+25. |
|
b) C′(v)=0 có hai nghiệm. |
|
c) Hàm số đạt cực tiểu tại v=−80. |
|
d) Đồ thị hàm số có tiệm cận đứng y=0. |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được đặt vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA;EB;EC;ED bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc α.
Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết các lực căng F1;F2;F3;F4 đều có cường độ là 4800N, trọng lượng của cả khung sắt chứa xe ô tô là 72006N. Tính sinα. (làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời:
Hàm số y=(x+m)3+(x+n)3−x3 đồng biến trên khoảng (−∞;+∞). Giá trị nhỏ nhất của biểu thức P=100[4(m2+n2)−m−n] bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tìm giá trị lớn nhất của hàm số y=∣f(x)∣ trên đoạn [−1;1].
Trả lời: .
Một đại lý nhập khẩu trái cây tươi để phân phối cho các cửa hàng. Mỗi lần nhập khẩu trái cây, khoán chi phí vận chuyển (không đổi) là 25 triệu đồng. Chi phí bảo quản mỗi tạ trái cây dự trũ trong kho là 80 nghìn đồng/ngày. Thời gian bảo quản trái cây trong kho tối đa 10 ngày. Biết rằng, kể từ ngày đầu tiên nhập hàng, đại lý sẽ phân phối tới các cửa hàng 25 tạ trái cây mỗi ngày. Mỗi lần nhập hàng, đại lý phải nhập đủ trái cây cho bao nhiêu ngày phân phối để chi phí trung bình cho mỗi ngày thấp nhất (bao gồm chi phí vận chuyển và chi phí bảo quản trong kho)?
Trả lời:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời: