Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=x4−2x2+2. Mệnh đề nào dưới đây đúng?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Điểm cực tiểu của đồ thị hàm số là
Cho hàm số y=3(x2−4)2 có đồ thị như hình vẽ sau.
Khoảng nghịch biến của hàm số trên là
Giá trị lớn nhất của hàm số y=f(x)=x+2x+1 trên đoạn [1;3] bằng
Đồ thị hàm số y=4x−1x+1 có đường tiệm cận ngang là đường thẳng nào dưới đây?
Đồ thị của hàm số nào dưới đây là đường cong trong hình vẽ?
Đồ thị hàm số y=2x−12x+1 có tọa độ giao điểm với trục tung là
Hệ số góc của tiếp tuyến với đồ thị hàm số y=x3+x tại điểm M(−1;0) là
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Dân số P (nghìn người) của một khu nghỉ dưỡng được cho bởi hàm số P(t)=2t2+7400t,t≥0, với t là thời gian tính theo tháng. Tiệm cận ngang đồ thị hàm số y=P(t) là
Kết quả của m để hàm số y=x+2x+m đồng biến trên từng khoảng xác định là
Giá trị của tham số m để đồ thị hàm số y=2x−m(m+1)x−5m có tiệm cận ngang là đường thẳng y=1 là
Cho hàm số y=f(x) liên tục trên đoạn [−1;3] và có đồ thị như hình vẽ.
a) Hàm số y=f(x) nghịch biến trên khoảng (0;2). |
|
b) [0;2]maxf(x)=1. |
|
c) Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [−1;3]. Giá trị của M+m là 2. |
|
d) Xét hàm số g(x)=f(x+1) thì [0;2]maxg(x)=−3. |
|
Cho hàm số y=x−2x2−x−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số đã cho có 3 đường tiệm cận. |
|
b) Tiệm cận đứng của đồ thị hàm số trên là x=−2. |
|
c) y=2 là tiệm cận ngang của đồ thị hàm số đã cho. |
|
d) Tiệm cận xiên của đồ thị hàm số có hệ số góc là 1. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình vẽ bên dưới.
Phương trình f[2−f(x)]=0 có bao nhiêu nghiệm?
Trả lời:
Cho hàm số y=f(x) liên tục trên R và có đạo hàm thỏa mãn f′(x)=(1−x2)(x−5). Hàm số y=3f(x+3)−x3+12x nghịch biến trên khoảng (a;+∞) với a là số nguyên nhỏ nhất. Tìm a.
Trả lời: