Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Khẳng định nào sau đây đúng?
Giá trị lớn nhất của hàm số y=3sinx là
Phương trình cosx=−23 có tập nghiệm là
Phương trình cotx=cotα có nghiệm là
Cho cấp số cộng có số hạng đầu u1=10 và số hạng thứ hai u2=13. Số hạng thứ tư của cấp số cộng đã cho là
Cho dãy số (un) với un=n2a−1. Khẳng định nào sau đây đúng?
Phương trình cosx=1 có nghiệm là
Nghiệm của phương trình cot(x+2)=1 là
Đường cong trong hình vẽ là đồ thị của một trong bốn hàm số nào sau đây?
Các nghiệm của phương trình cos2x−sin2x=0 là
Cho cấp số nhân (un) biết u3=9 và công bội q=−3. Tổng S3 của ba số hạng đầu của cấp số nhân (un) bằng
Nghiệm của phương trình cosx+sinx=1 là
Cho góc x thỏa mãn sinx=−53 và π<x<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosx>0. |
|
b) cosx=−54. |
|
c) tanx=43. |
|
d) cotx=34. |
|
Một vật dao động xung quanh vị trí cân bằng theo phương trình x=1,5cos(4tπ); trong đó t là thời gian được tính bằng giây và quãng đường h=∣x∣ được tính bằng mét là khoảng cách theo phương ngang của vật đối với vị trí cân bằng.
a) Vật ở xa vị trí cân bằng nhất nghĩa là h=1,5 m. |
|
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất. |
|
c) Khi vật ở vị trí cân bằng thì cos(4tπ)=0. |
|
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần. |
|
Một sinh viên sau khi ra trường và xin vào làm cho một trung tâm với mức lương khởi điểm là 100 triệu đồng một năm. Cứ sau mỗi năm, trung tâm trả thêm cho sinh viên 20 triệu đồng. Gọi un (triệu đồng) là số tiền lương mà sinh viên đó nhận được ở năm thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền lương sinh viên đó nhận được ở năm thứ hai là 120 triệu đồng. |
|
b) Số tiền lương sinh viên đó nhận được ở năm thứ 10 là 300 triệu đồng. |
|
c) Dãy số (un) là cấp số cộng có u1=120 và công sai d=20. |
|
d) Giả sử, mỗi năm bạn sinh viên chi tiêu tiết kiệm hết 70 triệu đồng. Vậy sau ít nhất 12 năm thì sinh viên đó tiết kiệm được đủ tiền mua căn chung cư 2 tỉ đồng. |
|
Cho góc lượng giác α, sao cho cotα=2+1,0<α<2π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0 và sinα>0. |
|
b) tanα=2+1. |
|
c) sinα=22−2. |
|
d) cosα=22+2. |
|
Một thiết bị trễ kĩ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần f1(t)=5sint và phát lại được nốt thuần f2(t)=5cost thì âm kết hợp là f(t) =f1(t)+f2(t), trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng f(t)=k sin(t+φ), tức là âm kết hợp là một sóng âm hình sin. Xác định biên độ âm k của sóng âm. (ghi kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời:
Cho dãy số (un) được xác định bởi công thức un=n+12n2+5n−3 (n≥1,n∈N∗). Dãy số có bao nhiêu số hạng nhận giá trị nguyên?
Trả lời:
Người ta trồng 3003 cây theo dạng một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây được trồng là bao nhiêu?
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Tìm số nguyên m nhỏ nhất để dãy số (un) với un=n+1mn+1 là dãy số tăng.
Trả lời: