Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào không là mệnh đề?
Mệnh đề phủ định của "20 là số hợp số" là
Cho hai tập hợp A và B được minh họa bằng biểu đồ Ven như hình vẽ:
Khi đó tập hợp C=A∪B là
Gọi miền biểu diễn tập nghiệm của bất phương trình x+2y≥3 là miền (H). Điểm nào sau đây thuộc (H)?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Giá trị của tan45∘+cot135∘ bằng
Cho tam giác ABC có B=45∘, cạnh AC=22 cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC bằng
Cho tam giác ABC thoả mãn b2+c2−a2=bc, trong đó a, b và c là độ dài ba cạnh. Số đo góc A bằng
Cho các tập hợp A={x∈N(4−x2)(x2−5x+4)=0}; B={x∈Zx là ước của 4}. Tập hợp A∩B là
Phần không tô màu trong hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào dưới đây?
Tổng sin22∘+sin24∘+sin26∘+...+sin284∘+sin286∘+sin288∘ bằng
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Theo tiêu chuẩn của Uỷ ban tăng cường sức khỏe HPB, lượng đường dung nạp thêm mỗi ngày không nên vượt quá 50 g. Biết một kilogam bánh quy chứa trung bình 150 g đường, một ly trà sữa chứa trung bình 55 g đường. Gọi x, y tương ứng là khối lượng bánh quy và số ly trà sữa tiêu thụ trong một tuần của một người.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) x≥0, y≥0. |
|
b) Lượng đường dung nạp từ số lượng bánh quy và trà sữa trên là: F(x;y)=150x+55y. |
|
c) Để đảm bảo sức khỏe theo tiêu chuẩn, ta cần điều kiện 150x+55y≤50 |
|
d) Một người ăn uống trong một tuần 0,4 kilogam bánh quy và 5 ly trà sữa thì không vượt qua ngưỡng tiêu thụ đường tiêu chuẩn. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho tanα=−125.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) α∈(90∘;180∘). |
|
b) cosα=1312. |
|
c) cotα=512. |
|
d) sinα=135. |
|
Một cuộc khảo sát thói quen sử dụng mạng xã hội của học sinh lớp 10A đưa ra những thông tin sau:
⚡Có 28 học sinh sử dụng Facebook.
⚡Có 29 học sinh sử dụng Instagram.
⚡Có 19 học sinh sử dụng Twitter.
⚡Có 14 học sinh sử dụng Facebook và Instagram.
⚡Có 12 học sinh sử dụng Facebook và Twitter.
⚡Có 10 học sinh sử dụng Instagram và Twitter.
⚡Có 8 học sinh sử dụng cả 3 loại mạng xã hội trên.
Có bao nhiêu học sinh lớp 10A tham gia khảo sát, biết rằng các học sinh tham gia khảo sát đều sử dụng ít nhất một loại mạng xã hội?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24 g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1 g hương liệu; pha chế 1 lít nước táo cần 10 g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính a−b.
Trả lời:
Một ô tô muốn đi từ A đến C nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có AB=15 km, BC=20 km và ABC=120∘. Giả sử ô tô chạy 5 km tốn một lít xăng, giá một lít xăng là 20 000 đồng.
Nếu người ta làm một đoạn đường hầm xuyên núi chạy thẳng từ A đến C, khi đó ô tô chạy trên con đường này sẽ tiết kiệm được số tiền là bao nhiêu nghìn đồng so với chạy trên đường cũ? (Làm tròn kết quả đến hàng phần mười)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Cho các số thực x,y thỏa mãn hệ phương trình ⎩⎨⎧x+2y−10≤02x+y−8≤0x≥0y≥0. Tìm giá trị nhỏ nhất của biểu thức P(x,y)=3x−2y+1.
Trả lời: