Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
a) Để Q là phân số
\(\Leftrightarrow n-1\ne0\Leftrightarrow n\Leftrightarrow1\)
Vậy với x khác 1 thì biểu thức đã cho là phân số.
b) Thay n tính ( So sánh với ĐKXĐ )
c) n là số nguyên thì n - 1 thuộc Ư {10}
a) Để A là phân số thì
\(n+2\ne0=>n\ne-2\)2
b) Zới n=0 (TMĐK) thì biểu phân A là
\(\frac{3}{n+2}=>\frac{3}{0+2}=\frac{3}{2}\)
zậy phân số A là \(\frac{3}{2}\)khi n=0
mấy cái kia tương tự
a) Để A là p/số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
b) Để\(A\inℤ\)
\(\Rightarrow n-3⋮n+3\)
\(\Leftrightarrow n-3=n+3-6\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vì :\(n\inℕ\)
\(\Rightarrow n\in\left\{0;3\right\}\)
c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)
Để A tối giản
\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)
\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)
\(\Rightarrow n-3⋮̸\)\(-6\)
\(\Rightarrow n-3\ne6k\)
\(\Rightarrow n\ne6k+3\)
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
\(A=\frac{3}{n+2}\)
a) \(\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{\pm1;\pm3\right\}\)
+) \(n+2=1\Leftrightarrow n=-1\)
+) \(n+2=-1\Leftrightarrow n=-3\)
+) \(n+2=3\Leftrightarrow n=1\)
+) \(n+2=-3\Leftrightarrow n=-5\)
b) \(A=\frac{3}{2};A=\frac{3}{2+2}=\frac{3}{4};A=\frac{3}{-7+2}=\frac{3}{-5}\)
\(A=\frac{3}{n+2}\)
Để A là phân số => \(n+2\ne0\)=> \(n\ne-2\)
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
a Điều kiện để \(\frac{3}{n+2}\)mà số nguyên n thỏa mãn là n\(\ne\)-2
b, Với n=0
\(\Rightarrow\frac{3}{n+2}=\frac{3}{0+2}=\frac{3}{2}\)
Với n=2
\(\Rightarrow\frac{3}{n+2}=\frac{3}{2+2}=\frac{3}{4}\)
Với n=7
\(\Rightarrow\frac{3}{n+2}=\frac{3}{7+2}=\frac{3}{9}\)
c, Để\(\frac{3}{n+2}\)nhận giá trị số nguyên thì
\(\Leftrightarrow3\)chia hết cho n+2
\(\Rightarrow n+2\inƯ\left(3\right)\)={-1;-3;1;3}
Ta có bảng giá trị
n+2 | -1 | -3 | 1 | 3 |
n | -3 | -5 | -1 | 1 |
Vậy n={-3;-5;-1;1}
cho mình nhé Thảo Nguyên
\(A\) là phân số khi \(n+2\ne0\)
\(\Leftrightarrow n\ne-2\)
b) khi \(n=0\Leftrightarrow A=\frac{3}{2}\)
khi \(n=2\Leftrightarrow A=\frac{3}{4}\)
khi \(n=7\Leftrightarrow A=\frac{1}{3}\)
c) để \(A\in Z\)thì \(3⋮\left(n+2\right)\)
\(\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{\pm1;\pm3\right\}\)
+ \(n+2=-1\Leftrightarrow n=-3\)
+ \(n+2=1\Leftrightarrow n=-1\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=-3\Leftrightarrow n=-5\)
vậy để \(A\in Z\) thì \(n\in\left\{\pm1;-5;-3\right\}\)
A là phân số <=> n thuộc Z
A là số nguyên <=> n-1 là ước của 5
Bạn lập bảng ra rồi tìm x là được.
nhìn vào biểu thức A, ta có thể thấy n-1 là ước của 5 rồi, thế thì cậu chỉ cần lập bảng tìm n là được. chúc bạn học tốt.
a: Để A là phân số thì \(n+2\ne0\)
=>\(n\ne-2\)
b: Khi n=-1 thì \(A=\dfrac{-1+7}{-1+2}=\dfrac{6}{1}=6\)
Khi n=-2 thì \(A=\dfrac{-2+7}{-2+2}=\dfrac{5}{0}\) vô lý
=>Khi n=-2 thì A không có giá trị
Khi n=0 thì \(A=\dfrac{0+7}{0+2}=\dfrac{7}{2}\)
c: Để A là số nguyên thì \(n+7⋮n+2\)
=>\(n+2+5⋮n+2\)
=>\(5⋮n+2\)
=>\(n+2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{-1;-3;3;-7\right\}\)
`a, n \ne -2`
`b,` Với `n = 0` thì thỏa mãn ĐKXĐ.
Với `n = -2` thì không thỏa mãn ĐKXĐ.
Với `n = -1` thì thỏa mãn ĐKXĐ
Thay `n = 0` vào biểu thức `A,` ta có:
`A = (0 + 7)/(0 + 2)= 7/2`
Thay `n = -1` vào biểu thức `A,` ta có:
`A = (-1 + 7)/(-1 + 2) = 6/1 = 6`