K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

a) Để A là phân số thì:

n - 3 \(\ne\)0

\(\Rightarrow\)\(\ne\)3

b) Để A là một số nguyên thì 7 \(⋮\)( n - 3 )

\(\Rightarrow\)n - 3 \(\in\)Ư(7)

Ư(7) = { 1 ; -1 ; 7 ; -7 }

\(\Rightarrow\)n - 3 \(\in\){ 1 ; -1 ; 7 ; -7 }

\(\Rightarrow\)\(\in\){ 4 ; 3 ; 10 ; -4 }

Vậy n \(\in\){ 4 ; 3 ; 10 ; -4 }

9 tháng 3 2018

a ) Để A là phân số => n - 3 \(\ne\)0 => n \(\ne\)3

Vậy n khác 3 thì A là phân số

b ) Để A thuộc Z

=> 7 \(⋮\)n - 3

=> n - 3 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }

=> n thuộc { - 4 ; 2 ; 4 ; 10 }

21 tháng 10 2015

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.

*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.

*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3) 

=> P = 3k + 1 hoặc 3k + 2

+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại

+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại

Vậy P chỉ có thể = 3

Bài 2: S = 30 + 31 + 32 + ... + 3123

S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)

S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)

S = 30.40 + ... + 3120.40

S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120

Vì tích chứa 10 => S chia hết cho 10.

21 tháng 10 2015

S = 1 + 3 + 32 + ... + 3123

S = ( 1 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )

S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)

S = 1.40 + 34.40 + ... + 3120.40

S = 4.10.(1+34+...+3120) chia hết cho 10

Câu 5

Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố

Suy ra 3p+7=2(L)

Khí đó p chẵn,mà p là số nguyên tố nên p=2

Vậy p=2

Câu 3

Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)

Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương

Suy ra a-b là số chính phương

Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)

Với a-b=1 mà 0<b<a nên ta có bảng sau:

a23456789
b12345678

Với a-b=4 mà a>b>0 nên ta có bảng sau:

a56789
b12345

Vậy ..............

23 tháng 10 2021

-Nếu n là số chẵn thì n4+4n là số chẵn lớn hơn 2 nên là hợp số

-Nếu n là số lẻ , đặt n=2k+1 với k là số tự nhiên lớn hơn 0

n4+42k+1=(n2)2+(2.4k)2-2.n2.2.4k

=(n2+2.4k)2-(2n.2k)2

=(n2+2.4k-2n.2k)(n2+2.4k+2n.2k)

Vì n2+2n.4k+2n.2k > n2+2.4k-2n.2k=n2+4k-2n.2k+4k

=(n-2k)2+4k>4

Suy ra n4+42k+1 là hợp số

Vậy n4+4n là hợp số với mọi số tự nhiên n >1

23 tháng 10 2021

cảm ơn bạn nha