K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1

Olm chào em, đây là diễn đàn học tập, không phải là nơi đăng quảng cáo em nhé. Cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

22 giờ trước (19:15)

xong òi đó


2 tháng 10 2018

Nội qui

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

10 tháng 5 2021

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> ΔACF=ΔACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH⊥AB (tại D)

=> ^HCB + ^ABC = 90 (1)

 Lại có AH⊥⊥BC => ^LHC + ^HCB = 90 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 180

=> ^ABC + ^AHC = 180. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 180

Xét tứ giác AHCK có: ^AKC + ^AHC =180 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=90 => ^CAP+^CPA=90 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=180=> ^CPA+^AHC=180 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có ΔACF=ΔACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=180 hay ^AIG + ^AHC=180 (4)

Từ (3) và (4) => ^AIG=^CPA (*)

Từ (*) và (**) => ^CAP+^AIG=900hay ^IAQ+^AIQ=900 => ΔAIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

10 tháng 5 2021

Sai đề kìa

1 tháng 11 2021

j vậy bn

 

4 tháng 3 2022

thử copy xem

21 tháng 9 2020

A B C D E F H

Bài làm:

Ta có: \(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\)

\(=\left(\frac{AH}{HD}+1\right)+\left(\frac{BH}{HE}+1\right)+\left(\frac{CH}{HF}+1\right)-3\)

\(=\frac{AH+HD}{HD}+\frac{BH+HE}{HE}+\frac{CH+HF}{HF}-3\)

\(=\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}-3\)

\(=\frac{S_{ABC}}{S_{BHC}}+\frac{S_{ABC}}{S_{AHC}}+\frac{S_{ABC}}{S_{AHB}}-3\)

\(=S_{ABC}\left(\frac{1}{S_{BHC}}+\frac{1}{S_{AHC}}+\frac{1}{S_{AHB}}\right)-3\)

\(\ge S_{ABC}\cdot\frac{9}{S_{BHC}+S_{AHC}+S_{AHB}}-3\)

\(=S_{ABC}\cdot\frac{9}{S_{ABC}}-3\)

\(=9-3=6\)

Dấu "=" xảy ra khi H là trọng tâm tam giác ABC

=> Tam giác ABC đều => AB = AC vô lý

=> Không xảy ra dấu bằng

=> đpcm

21 tháng 9 2020

làm giùm thì được chứ subrice là ko