K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1

\(S=1-3+3^2-3^3+...+3^{2020}-3^{2021}+3^{2022}\)

\(\Rightarrow3S=3-3^2+3^3-3^4+...+3^{2021}-3^{2022}+3^{2023}\)

\(\Rightarrow4S=S+3S\)

\(=\left(1-3+3^2-3^3+...+3^{2020}-3^{2021}+3^{2022}\right)+\left(3-3^2+3^3-3^4+...+3^{2021}-3^{2022}+3^{2023}\right)\)

\(=1+3^{2023}\)

\(\Rightarrow4S-3^{2023}=1+3^{2023}-3^{2023}=1\)

3S=3-3^2+...-3^2022+3^2023

=>4S=3^2023+1

=>4S-3^2023=1

15 tháng 1 2023

Ta có S = 1 + 3 + 32 + ... + 32022

          3S = 3 + 32 + 33 + ... + 32023

          2S = (  3 + 32 + 33 + ... + 32023 ) - ( 1 + 3 + 32 + ... + 32022 )

                = 32023 - 1

⇒ 4S - 22023 = 2( 32023 - 1 ) - 22023 

                     = 2 . 32023 - 2 - 32023

                     = 32023( 2 - 1 ) - 2

                     = 32023 - 2

Vậy 4S = 32023 - 2

 

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

26 tháng 1 2024

\(A=\dfrac{2023^{2022+2}}{2023^{2022-1}}=2023^{2024-2021}=2023^3\\ B=\dfrac{2023^{2022}}{2023^{2022-3}}=2023^3\\ \Rightarrow A=B\left(=2023^3\right)\)

16 tháng 4 2023

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

24 tháng 9 2024

Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023

=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023

=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)

=> C = 1/2. (1/1.2 - 1/2022.2023)

- Phần còn lại bạn tự tính chứ số to quá