Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^{51}=n\)
\(\Rightarrow n^{51}-n=0\)
\(n\left(n^{50}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}=1\end{cases}}\)
\(\Rightarrow n\in\left\{-1;0;1\right\}\)
b) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(3n-n=2\)
\(2n=2\)
\(n=2:2=1\)
c) \(3^{-2}.3^4.3^n=3^7\)
\(3^{n+4-2}=3^7\)
\(3^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n-7=5\)
d) \(32^{-n}.16^n=2048\)
\(2^{-5n}.2^{4n}=2^{10}\)
\(2^{4n-5n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow-n=10\)
\(\Rightarrow n=-10\)
a)n5 = 32 = 35
\(\Rightarrow\)n=3
( n - 1 )5 = 35
\(\Rightarrow\)n - 1 = 3
\(\Rightarrow\)n = 3 +1
\(\Rightarrow\)n=4
c)( n + 1 )3 = 125
\(\Rightarrow\)( n + 1 )3 = 53
\(\Rightarrow\)n + 1 = 5
\(\Rightarrow\)n = 4
d) ( n - 2)10 = 1
\(\Rightarrow\)( n- 2 )10 = 110 = ( -1)10
\(\Rightarrow\)\(\orbr{\begin{cases}n-2=1\\n-2=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\n=1\end{cases}}}\)
1a số tận cùng là 2
b số tận cùng là 4
c số tận cùng là 1
d số tận cùng là 1
\(A=1+7+7^2+7^3+...+7^{200}\)
\(\Rightarrow7A=7+7^2+7^3+...+7^{201}\)
\(\Rightarrow7A-A=\left(7+7^2+...+7^{201}\right)-\left(1+7+7^2+...+7^{200}\right)\)
\(\Rightarrow6A=7^{201}-1\)
\(\Rightarrow A=\frac{7^{201}-1}{6}\)
\(B=5^1+5^3+5^5+...+5^{101}\)
\(\Rightarrow5^2B=5^3+5^5+5^7+...+5^{103}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{103}\right)-\left(5+5^3+...+5^{101}\right)\)
\(\Rightarrow24B=5^{103}-5\)
\(\Rightarrow B=\frac{5^{103}-5}{24}\)
\(D=1+a+a^2+a^3+...+a^n\)
\(\Rightarrow aD=a+a^2+a^3+...+a^{n+1}\)
\(\Rightarrow aD-D=\left(a+a^2+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)\)
\(\Rightarrow\left(a-1\right)D=a^{n+1}-1\)
\(\Rightarrow D=\frac{a^{n+1}-1}{a-1}\)
a) 5n+1 - 3.5n = 1250
5n.(5-3) = 1250
5n.2 = 1250
5n = 625 = 54
=> n = 4
b) 4n .2n-1 = 32
22n.2n-1 = 32
22n+n-1 = 32 = 25
=> 2n + n - 1= 5
3n -1 = 5
3n = 4
n = 4/3
1) \(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
Vì \(5< n< 7\)
Nên \(n=6\)
Vậy \(32< 2^6< 128\)
2) \(2.16\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
Vì \(5\ge n>4\)
nên \(n=5\)
Vậy \(2.16\ge2^5>4\)
3/ Tương tự
P/S: chỉ cần đổi các số ra lũy thừa là sẽ tính được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Kết bạn với mình nha!