K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

9 tháng 11 2019

Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

6 tháng 3 2020

Câu b, c, thôi cx được ạ

3 tháng 5 2019

a, áp dụng định lí py-ta-go vào tam giác vuông ta có:

             \(BC^2=AB^2+AC^2\)

=>  \(AC^2=BC^2-AB^2\)

=> \(AC^2\)= 169 - 25 =144 cm

=> AC=12 cm

vậy AC=12 cm

b, xét 2 t.giác vuông ABE và DBE có:

           AB=DB(gt)

           BE cạnh chung

=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE

xét 2 t.giác vuông AEF và DEC có:

         AE=DE

        \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)

=> È=EC(2 cạnh tương ứng)

d, gọi O là giao điểm của EB và AD

xét t.giác ABO và t.giác DBO có:

          OB cạnh chung

         \(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)

         AB=BD(gt)

=> t.giác ABO=t.giác DBO(c.g.c)

=> OA=OD=> O là trung điểm của AD(1)

\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)

từ (1) và (2) => BE là trung trực của AD

           

A B C D E 5cm 13cm F O