K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 11 2017
Bạn áp dụng cái này là được: \(a^3-a⋮3\)\(\forall a\in Z\)
D
25 tháng 7 2015
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
a+1/a là số nguyên.
=>a+1 chia hết cho a
=>1 chia hết cho a
=>a=Ư(1)=(-1,1)
Xét a=1=>an+1=1+1=2 chia hết cho 1=1n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Xét a=-1.
Với n chẵn=>an+1=1+1=2 chia hết cho 1=1n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Với n lẻ=>an+1=-1+1=0 chia hết cho -1=(-1)n=an
=>an+a chia hết cho an
=>an+1/a là số nguyên.
Vậy an+1/a là số nguyên.
Bạn Lê Chí Cường giải không đúng, do hiểu nhầm \(a+\frac{1}{a}\). là \(\frac{a+1}{a}\).
Bài này giải như sau: Ta tiến hành chứng minh bằng quy nạp rằng \(a^n+\frac{1}{a^n}\) là số nguyên dương với mọi \(n\) nguyên dương.
Thực vậy, theo giả thiết \(a+\frac{1}{a}\in Z\) nên khẳng định đúng khi \(n=1.\)
Với \(n=2,\) thì ta có \(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2\in Z.\)
Giả sử rằng \(a^k+\frac{1}{a^k}\) là số nguyên dương với mọi \(k\) nguyên dương với mọi \(k=1,\ldots,n\). Ta cần chứng minh \(a^{n+1}+\frac{1}{a^{n+1}}\) cũng là số nguyên. Thực vậy, ta có \(\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)=\left(a^{n+1}+\frac{1}{a^{n+1}}\right)+\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\)
\(\to a^{n+1}+\frac{1}{a^{n+1}}=\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)-\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\).
Theo giả thiết quy nạp \(\left(a+\frac{1}{a}\right),\left(a^n+\frac{1}{a^n}\right),\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\) là các số nguyên nên \(a^{n+1}+\frac{1}{a^{n+1}}\) cũng là số nguyên.
Vậy khẳng định đúng với \(n+1.\). Theo nguyên lí quy nạp khẳng định đúng với mọi số nguyên dương \(n.\)